
iconet documentation

Iconet Foundation

Mar 30, 2023

CONTENTS

1 What’s here? 3

2 Prototypes 5

3 Website 7
3.1 Use Case . 7
3.2 Specification . 9
3.3 Challenges & Approach Discussion . 22
3.4 Glossary . 27

i

ii

iconet documentation

This document outlines the proposed Iconet (interconnected networks) specification, which describes a minimal fall-
back mechanism to display and interact with content from natively unsupported social networks and clients.

This documentation is an early structural draft of a standard for interconnectivity. The standard recommendation is yet
to be created through peer reviews and an open community process. Different parts can potentially be subject to radical
change in the future.

If you have any questions, feedback, or ideas, don’t hesitate to contact or open an issue / pull request on codeberg.

CONTENTS 1

https://iconet-foundation.org/about
https://codeberg.org/iconet-Foundation/documentation

iconet documentation

2 CONTENTS

CHAPTER

ONE

WHAT’S HERE?

• The Specification of..

– data required to provide a presentation fallback or a packet translation (Required Iconet Data for a Packet)

– manifests that contain the required data to create a fallback presentation or translation (Interpreter Mani-
fests)

– the usage of iframes to provide a packet presentation fallback or to translate a packet, as well as the com-
munication flow between iframe and embedding application (Fallback-iframes)

– methods and discussions on isolating iframes from the embedding application to prevent data leakage
(Iframe Permissions and Sandboxing)

• Challenges & Discussions outlines discussions we faced during development and possible alternatives for the
spec.

• Glossary explains the basic terms and components

3

iconet documentation

4 Chapter 1. What’s here?

CHAPTER

TWO

PROTOTYPES

To demonstrate and experiment with the functionality of the spec, we developed a prototype network and developed an
extension to mastodon:

• Prototype Network A and

• Mastodon Fork

You can find all of our repositories on Codeberg.

5

https://codeberg.org/iconet-Foundation/prototype-ExampleNetA
https://codeberg.org/iconet-Foundation/mastodon
https://codeberg.org/iconet-Foundation

iconet documentation

6 Chapter 2. Prototypes

CHAPTER

THREE

WEBSITE

See the Iconet Foundation Website for current blog updates, explanatory materials and ways to contribute.

From September 2022 to February 2023 this project receives funding from the German Ministry of Education and
Research.

3.1 Use Case

This page aims to give a better understanding off the general purpose of the project, aswell as by whom and how it
should be adapted.

3.1.1 Summary

Interconnectivity for social networks aims to ensure that users of different networks based on different technologies
are able to interact.

This is achieved by establishing a common fallback mechanism, both within different decentral networks, and across.

Pretext: Interoperability

There is a variety of open social networks based on protocols which are open source and therefore freely accessible.
Many of those networks based on the same or a similar protocol, have chosen to federate, this means allowing a cross
communication for users. This is called interoperability. A prominent example for such a protocol is ActivityPub which
is implemented by 50+ Softwares and connects millions of people.

There are plenty of technologies and applications that wish to federate

7

https://iconet-foundation.org
https://www.w3.org/TR/activitypub/
https://fedidb.org/software

iconet documentation

Problem: Incompatibilities

The different applications for such protocols are developed by independent teams - each of them with varying intentions
and goals for the functionality of their application. This creates a great diversity and ensures freedom of choice across
the network. But also it often results in technical incompatibility, because different aspects of a protocol are used,
different extensions are created, or entirely different protocols or tools are implemented in the first place. Due to those
issues the general promise of open federated networks is not fully given across ends. For the uninitiated user those
limits are not comprehensible.

While decentral systems are fully capable, developers of users applications often only implement subsets of
possible formats and interaction methods. Therefore content by users off different applications often can not be
presented.

Solution: Interconnectivity

In contrast to interoperability, which ensures broad functionality for networks, with interconnectivity we focus on the
communication capability between explicitly incompatible systems. For many use cases, it is important that deeper
functionality is fully mapped across all networks involved. Wherever this does not work interconnectivity ensures that
communication is transmitted securely and presented properly. It serves as a minimal fallback mechanism, applications
can use in addition to their core functionality.

Having a fallback in place, ensures communication.

3.1.2 Adoption

By whom and how is interconnectivity to be adopted? Here we have an overview:

Inner Use case of interconnectivity

Projects like the Fediverse, Matrix.org, SoLiD, BlueSky, XMPP each enable complex decentral datastructures. The
inner use case is for those systems, to include the fallback mechanism into their internal packet exchanges.

If they adopt the fallback to their protocol, they gain the following advantages:

• End to end communication within the protocol is ensured.

• Applications can become more diverse, because innovative formats can be adopted by anyone right away.

• The eco system may evolve, because older versions stay compatible with newer ones.

To adopt the fallback internally, the following measures need to be taken:

• for any format, a interpreter of the native package needs to be provided. (HTML)

• for any client, the displaying of an fallback interpreter needs to be provided. (Java Script)

• for any packet, the information on where to find the corresponding interpreter needs to be added. (JSON)

The inner use case is necessary for decentral data exchanges, to avoid internal incompatibilities.

8 Chapter 3. Website

iconet documentation

Outer Use case

Networks which adopted the fallback mechanism, can ensure communication across their network. The fallback mech-
anism then can be especially effective, if also fallback means of transportation are adopted. If e.g. from an endpoint in
the fediverse a packet including fallback info can be delivered to an end point in Matrix, communication here can also
be assured. This is the outer use case, to use the fallback to acchieve interconnectivity across technical barriers.

If networks adopt the fallback transport, they gain the following advantages:

• massivly extended connectivity for their users (in and out)

• organical distribution of communication technologies, because they know can peacefully coexist.

• a stable global communication network, available to anyone independent of technology.

To adopt the fallback externally, the following measures need to be taken (additional to the inner use case):

• adopt the fallback means of addressing, packeting, encryption as a second layer of transport.

The outer use case is the chance to bridge the gap between different communication technologies, for maximum
independence of the users.

Closing statement

With interconnectivity, the former limitations of interoperability turn into strengths. While before different standards
and implementations where competing in an incompatible manner, they now can coexist in a user friendly way. New
implementations can arise and spread organically, users can openly decide, which technology to use.

Note: The restraint of interconnectivity to the bare technical minimum is not meant to span a meaningful social
network of its own. Of course deeper functionality and security mechanisms are to be adapted, to create a meaningful
and save user experience. Each actor who initiates communication, by choosing the software and the technology, also
chooses the more detailed conditions of communication. If actors on the receiving end of such communication do
not agree with any of these conditions, it should be blocked. Interconnectivity aims to remove arbitrary technical
barriers, so that developers and users have the chance to enforce barriers by design and by choice. When actors have
contradicting communication desires, that’s not a technical issue and couldn’t be solved by any protocol.

interoperability > interconnectivity > no connectivity.

3.2 Specification

3.2.1 1. Overview

Iconet is about presenting content from foreign sources in situation where a client is not able to present this content
with native means.

This document and subdocuments linked here will guide you through the process of supporting interconnectivity. The
walkthrough comprises the following steps:

1. To begin with, a packet is sent to a client that does not have the capabilities to display / present it to the user.

2. The packet however has iconet-(meta)data attached which the client can use as a fallback. The data required
is described in section 2. Required Iconet Data for a Packet. The iconet data may also provide the packet in
additional formats.

3.2. Specification 9

iconet documentation

3. The iconet data includes information that allows the client to render a presentation from the packet (using fallback-
iframes) and optionally translate the packet to different formats. Note, that packet content (dynamic & private)
is intentionally separated from the fallback iframe data (static & public). See section 3. Interpreter Manifests.

4. The presentation is rendered (or translated) with a fallback-iframe. Fallback-iframes and the communication
flow between the fallback-iframe and the embedding application, as well as sandboxing, is described in section
4. Fallback-iframes.

5. Last but not least - some packet types (e.g. polls) need support for interactions, to communicate back to sender
of a packet (or even to third parties). Receiving updates to certain packets (e.g. read receipts or comments) are
valid use cases as well. How this can be done is discussed in sections 4.2.4. Sending Interactions and 4.2.5.
Receiving Updates / Interactions.

1.1 Introductory Notes

The format and schema of packets varies among protocols. To support an iconet fallback presentation (fallback-iframe),
embedding applications and fallback iframe developers will however have to support a common set of standardized
procedures.

What is standardized?

• Communication between fallback-iframe and embedding application

• Iconet-specific metadata

• Interpreter Manifests (documents about the fallback iframes (i.e. interpreters) used to display or convert a packet)

• Communicating interactions between embedding application with fallback-iframes

What is not standardized?

• What packets look like that are to be presented to the user

• What is communicated

• How packets are transported from network A to B / What transport protocol is used.

• How the iconet metadata is formatted in a given protocol packet

The data objects described here are JSON-LD formatted. If you are not familiar with JSON-LD, think of it as plain
JSON with some fancy @context and @type fields. They allow the JSON keys to be globally uniquely identifiable.
Iconet’s JSON-LD @context namespace is: https://ns.iconet-foundation.org#

3.2.2 2. Required Iconet Data for a Packet

Say, a client received a foreign packet and cannot provide a presentation natively. However, the packet contains iconet
data that the client knows how to deal with. This section describes the required iconet data. Note, that iconet metadata
that describes how to interpret a packet is static. This makes it cacheable and reduces the privacy and security attack
surface for the actual user-content.

The following example shows a representation of how the iconet metadata could be contained in a JSON-LD object. It
holds minimal amount of data, since only the mandatory interpreter from native to html is given.

{
"@context": "https://ns.iconet-foundation.org#",
"@type": "Packet",
"actor":"iconet:alice@alicenet.net",
"to": "iconet:bob@bobnet.net",
"interpreterManifests": [

(continues on next page)

10 Chapter 3. Website

iconet documentation

(continued from previous page)

{
"@id": "<e.g. https://app.example/interpreter/manifest>",
"sourceTypes": ["<accepting packet source type, e.g. application/mastodon+json>"],
"targetTypes":["<available output types, e.g. application/iconet+html or␣

→˓application/matrix+json>"],
"sha512": "<sha512 hash of the manifest document linked>"

}
],
"content": [
{
"packetType": "<the type of the packet, e.g. application/mastodon+json>",
"payload": "<data of the native packet>"

},
{
"packetType": "<e.g. text/plain>",
"payload": "<e.g. This message is a poll which your client does not support>"

}
]

}

Note: It is up to a given protocol, how this metadata is actually contained in a packet. XML-based protocol designers
may wish to use an XML-based representation over a JSON-based one, for example. When the packet crosses protocol
borders however, it needs to be ensured to be formatted in JSON-LD.

3.2. Specification 11

iconet documentation

2.1 Field Descriptions

Field
Name

Type Description

@context string|object|arrayThe JSON-LD context namespace. This should be set to https://ns.
iconet-foundation.org#. You can find more details here.

@type string The type of data, the packet contains. For regular payloads, this would be Packet.
Depending on the context, the types Interaction, TranslatedPacket, (Update,
UpdateInquiry) may be applicable.|br| The semantics for those packets are discussed
in later sections.

interpreterManifestsarray
of inter-
preter
manifest
descrip-
tions

An interpreter manifest contains a list of interpreter descriptions. Interpreters take a
foreign protocol’s packet and either show a presentation or translate the packet to a
different format.

interpreterManifests[i]
.@id

string The location of the manifest or a data: URI containing the interpreter manifest.

interpreterManifests[i]
.
sourceTypes

array
of mime
type
string

A list of mime types or custom, application-specific types. For each input type in the
list, the manifest must provide an interpreter accepting the given input type.

interpreterManifests[i]
.
targetTypes

array
of mime
type
string

A list of mime types or custom, application-specific types. For each target type in the list,
the manifest must provide an interpreter producing the given target type. Every packet
must be able to find an interpreter with target application/iconet+html (mime type
of fallback presentation-iframe).

interpreterManifests[i]
.sha512

hex
string

A sha512 hex signature of the interpreter manifest document. Tip: can be computed
with crypto.subtle.digest('sha512', data) in javascript.

content array of
content
records.

Each content record consists of fields that describe and hold the same data but in a
different format. If a client does not support the first listed content record, it can go
down the list. It is advisable to provide a plain text fallback as last item.

content[i].
packetType

an ex-
tended
mime
type
string

This field describes the type of the payload field content. This may be a general type
like text/plain or image/jpeg, or it can be a non-standard application-specific mime
type (e.g. application/matrix).

content[i].
payload

string This field contains the data of the packet sent. The type and format is not specified
and needs to be interpreted by the application or an interpreter that is linked in the
interpreter manifest. An implementing protocol will likely want to allow this field to be
be undefined, if the wrapping packet (i.e. the packet that contains this iconet packet) is
to be used as payload.

3.2.3 3. Interpreter Manifests

WIP-Level: 2

The interpreter manifests are JSON-documents that contain the metadata for fallback-iframes and translators. The
manifests are linked by iconet-supporting packets and should be cached by the clients. When a client does not know
how to present a packet to a user, it will fetch the manifest for a given source packet type and use a fallback presenter-
or translator-iframe referenced in the interpreter manifest to present or translate the foreign packet.

The manifest format is standardized, in comparison to the metadata described in the section above (Required Iconet
Data for a Packet). You can see an example below:

12 Chapter 3. Website

https://www.w3.org/TR/json-ld/#the-context

iconet documentation

{
"@context": "https://ns.iconet-foundation.org#",
"@type": "InterpreterManifest",
"@id": "<URI of this document>",
"interpreters": [
{
"@id": "<URI to fallback-iframe>",
"sourceType": "<(custom) mime type, e.g. application/activity+json>",
"targetType": "<(custom) mime type application/matrix+json or application/

→˓iconet+html>",
"sha512": "<sha512 hash of the linked document>",
"permissions": {
"<some permission>": "<value>"

}
}

]
}

If the targetType of a here given interpreter is application/iconet+html, the @id field must reference a HTML
document that is a presenter iframe. If the targetType of a here given interpreter is anything else, the @id field must
reference a HTML document that is a translator iframe for that target type. The @id field may have a data: URI value
containing the HTML payload. Permissions are described in 4.1.1 Fallback-iframe Permissions.

3.2.4 4. Fallback-iframes

Fallback-iframes build the foundation of presenting packets to the user or translating them. The interpreter manifest’s
targetType must reference a fallback iframe HTML document. The HTML document must be embedded and sand-
boxed using the HTML iframe tag. There are multiple methods described for embedding and sandboxing in section
4.1.3 Sandboxing Iframes.

This section describes the communication and encapsulation between embedding application and fallback-iframe. The
embedding application passes a packet to the embedded fallback-iframe to display it, see 4.2 Communication between
Embedding Application and Fallback-iframe for the walkthrough.

There are two types of fallback iframes: Translator Iframes and Presenter Iframes. Translator iframes simply return a
packet translated to a different format when they are given a packet, as described in 4.2.3. Packet Translation Response.
Presenter iframes instead render a HTML presentation. Users may interact with them and the iframes may trigger
interaction packets back to the sender of the packet, as described in 4.2.4. Sending Interactions.

See also:

You can find an example document, an embedding application that embeds an iframe, enforces restrictions, and initiates
communication here.

Since by default, fallback-iframes are not allowed to connect to endpoints on the web, all data needs to be embedded
within the iframe’s HTML. You can see an example of an embedded image here.

To maintain security and safety for users, it is important to sandbox the iframes and restrict permissions. For permissions
and sandboxing, see the section linked here:

3.2. Specification 13

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
./_static/code-examples/iframe-sandboxing/parent.html
./_static/code-examples/iframe-blobs/html-with-image-data.html

iconet documentation

4.1 Iframe Permissions and Sandboxing

Fallback-iframes are used to display and encapsulate iconet messages in HTML format. The following sections describe
how communication and encapsulation between parent and the fallback-iframe can be accomplished, different levels
of isolation, and the permissions used to describe them in the interpreter manifest.

See also:

You can find an example document, an embedding application that embeds an iframe, enforces restrictions, and initiates
communication here.

Since by default, fallback-iframes are not allowed to connect to endpoints on the web, all data needs to be embedded
within the iframe’s HTML. You can see an example of an embedded image here.

4.1.1 Fallback-iframe Permissions

By default, an iframe is not allowed to establish connections to the outside world. By requesting permissions, the iframe
communication restrictions may be alleviated.

Name Range Description
allowedSourcesarray of CSP

source values
Sources to URIs the iframe may connect to. Defaults to empty.

allowInteractionsboolean If the fallback-iframe is allowed to send interactions via the embedding application.
If true, must be set along with interactionCooldown. Default is false.

interactionCooldownnumber The number of seconds the fallback-iframe needs to wait until it can send another
interaction. Requires allowInteractions to be set to true.

allowContentRequestboolean Experimental: Allow the iframe to make requests through the embedding applica-
tion, to check if there are updates to the packet using the interaction pull method.

4.1.2 Levels of Isolation

WIP-Level: 3 (figuring out which permissions to offer by spec and when to apply which ones is still in debate)

Depending on the trust established between receiver and sender, the capabilities of the iframe may be restricted to
varying extent. The following subsections discuss different levels of isolation, beginning with the strictest.

Disabled Remote Resource Access

For this level, the fallback-iframe will receive the iconet packet but is not allowed to send information away or request
additional content (e.g. images). All resources have to reside in the HTML of the fallback-iframe, e.g. images must be
encoded in the HTML. Encoded binary data should reside at the bottom of the document to enable pre-rendering the
rest of the document.

14 Chapter 3. Website

./_static/code-examples/iframe-sandboxing/parent.html
./_static/code-examples/iframe-blobs/html-with-image-data.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/Sources
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/Sources

iconet documentation

Controlled Remote Communication

Sending packets from the fallback-iframe is allowed but only by using a channel controlled by the embedding applica-
tion.

This way, the parent can restrict the frequency of messages sent and restrict the addressees to the sender audience. See
the section on sending interactions

TODO: Sort out specification for allowed addressee restriction.

Enabled Remote Resource Fetching

TODO: enhance CSP configuration description.

The fallback-iframe is allowed to fetch resources from certain sources that are whitelisted in the iconet packet. The
parent applies a corresponding default-src Content Security Policy.

Additional CSP directives do not seem to provide additional security (e.g. using a more liberal img-src compared to
default-src cannot prevent the script from communicating through image resources)

The degree of trust between sender and receiver must be fairly high, since a lot of metadata (e.g. IP, browser fingerprint,
time of rendering the message, user behavior) can be exposed this way.

Trust

There are at least three imaginable sources for interpreters and multiple authorities for determining the level of trust
that a fallback-iframe should be granted.

Sources for interpreters:

• sending client (linked in iconet packet)

• receiving client (either from cache or configuration)

• community repository

Authorities for establishing trust:

• A designated third party authority or community repository

• The interpreter domain / organization

• The sending user

• The receiving user by review

Most times, there is to some degree a trade-off between usability and privacy. We want to make this as small as
possible while preserving a high degree of privacy. Therefore, a fallback-iframe should limit its level of isolation to
the minimum required. This will improve usability for users, since they do not have to perform a review to elevate the
fallback-iframe’s permission.

Establishing trust is a critical component and needs additional elaboration and agreement among participating
parties. This is a big TODO and detailed specification seems out of scope for now.

3.2. Specification 15

iconet documentation

4.1.3 Sandboxing Iframes

WIP-Level: 1

Fallback-iframes must be sandboxed to enforce isolation and prevent execution of arbitrary code in the parent container
and communication to the outside world.

Content Security Policy

To prevent iframes from unmonitored communication in browser-based contexts, a Content Security Policy (CSP) can
be employed. Below, you can find three approaches to enforce CSPs on iframes.

Option 0: Using the Iframe’s csp Attribute

As of 2022-11-23, there exists a draft spec to enforce the CSP on an iframe:

<iframe csp="default-src 'none'">

It is however not supported by Firefox and Safari.

Option 1: Add a CSP to the Iframe’s HTML

(1) Fetch the fallback-iframe’s HTML by script

(2) Modify the fetched HTML appending a meta tag at the top of the HTML head:

<html>
<head>
<meta http-equiv="Content-Security-Policy" content="child-src 'none';" />
...

(3) Set the modified HTML to the iframe’s srcdoc attribute.

Warning: You must make sure that no scripts or remote content precedes the meta tag. The CSP only takes effect,
once the tag is parsed. See the spec for more details.

Option 2: Use a proxy that sets the appropriate Content Security Policy headers

Instead of using the URI to the fallback-iframe directly, use a trusted proxy that fetches the iframe HTML and sets the
desired CSP headers on response.

16 Chapter 3. Website

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/API/HTMLIFrameElement/csp
https://w3c.github.io/webappsec-csp/#meta-element

iconet documentation

4.2 Communication between Embedding Application and Fallback-iframe

The communication flow to set up the communication looks as follows

1. The fallback-iframe initiates the communication, once loaded. It transfers a message port to the parent.

2. The parent receives the initiation request and responds with the iconet packet to render to the user.

3. For Translators: The iconet translator iframe responds with the translated packet. Communication has finished.

4. Optional: The iconet presenter iframe requests to send away an interaction packet.

5. Optional & at Discussion: The parent receives an additional packet that is passed on to the fallback-iframe.

4.2.1 Fallback-Iframe Ready

When the fallback-iframe is ready to receive packets, it calls parent.postMessage() (see reference) with
targetOrigin of *.

The message parameter must look as follows:

{
"@context": "https://ns.iconet-foundation.org#",
"@type": "IframeReady"

}

The fallback-iframe MUST create a message channel and pass its message port using the transfer parameter of
parent.postMessage(). The message channel must be used for all future communication.

The initiation in the fallback-iframe may look something like:

document.addEventListener("DOMContentLoaded", async() => {
// Create a message channel for the future communication with the parent.
const messageChannel = new MessageChannel();
messageChannel.port1.onmessage = (messageEvent) => {
console.info("Message received from parent!", messageEvent);
// Handle incoming data and render a presentation.

};

// Send initial message to parent, transferring the message port.
parent.postMessage({

"@context": "https://ns.iconet-foundation.org#",
"@type": "IframeReady"

},
"*",
[messageChannel.port2]

);
});

3.2. Specification 17

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/MessageChannel
https://developer.mozilla.org/en-US/docs/Web/API/MessagePort

iconet documentation

4.2.2 Parent Response

The parent, listening to the iframe’s message events, receives the message event and the transferred mes-
sage port. Using the message port, the parent responds with the packet payload (event.ports[0].
postMessage(packetPayload)).

The listener must validate that the iframe’s initial message comes from the expected source iframe.

See the code example for an embedding application listening to an iframe:

window.addEventListener("message", (event) => {
// Validate event source.
if (event.source !== targetIframe.contentWindow) {
// Handle illegal message.
return;

}

// The iframe passed a message port for further and secure communication.
iframeMessagePort = event.ports[0];
iframeMessagePort.onMessage = (message) => {
// Handle message from iframe here.

};

// Pass the received foreign iconet packet payload to the iframe.
iframeMessagePort.postMessage(payloadForIframesMimeType);

});

The fallback iframe can now use the received payload (which was formatted in the sourceType specified by the
interpreter manifest), to either render a presentation (if the targetTypewas application/iconet+html) or translate
the packet to the according targetType otherwise.

4.2.3. Packet Translation Response

WIP-Level: 2

If the fallback-iframe is a translator iframe and has received the foreign packet, it responds with the translated packet
as following:

{
"@context": "https://ns.iconet-foundation.org#",
"@type": "TranslatedPacket",
"originalPacket": "<id of original packet>",
"mimetype": "<translated packet's mimetype",
"payload": "<translated packet>"

}

18 Chapter 3. Website

iconet documentation

4.2.4. Receiving Updates / Sending Interactions

It is necessary to receive updates to a packet, e.g. to load the newest version of a post. Since creation of the post and
the actual viewing by the recipient interactions and updates may have happened.

The updates are requested and interactions are sent by the fallback iframe through native APIs provided by the sending
server.

In the manifest such native API’s need to be listed in allowedSources according to the Fallback-iframe Permissions.

Example:

"allowedSources": [
"http://localhost:8001/api/getPost.php",
"http://localhost:8001/api/addComment.php"

]

This leverages flexible capabilities for the fallback-iframe developer but may lead to a larger amount of (meta) data
leakage to the whitelisted sources. In addition, the whitelisted sources should be approved by the embedding application
itself and/or the user which might turn out to be challenging from a UX perspective.

3.2.5 5. Transport

So how do the packets reach their supposed destination? There are three ways:

5.1 Native Transport

The core use-case of iconet is, to provide a fallback for within networks, where connectivity is already established.
In this case decentral applications with already common understandings of actors, relationships do share means of
communication and security.

It is trivial for them, to also include the required fallback fields into their exchanged packets.

Here you see an example of a activitystream packet including the iconet information:

{
"type":"Create",
"@context":"https://www.w3.org/ns/activitystreams",
"id":"https://bridge.localhost/b3f764ba-6343-419a-be42-a91580b7454b",
"actor":"https://bridge.localhost/user/alice__neta.localhost",
"object":{
"type":"Note",
"https://ns.iconet-foundation.org#iconet":{
"@context":"https://ns.iconet-foundation.org#",
"@type":"Packet",
"@id":"https://bridge.localhost/9c94ca30-60e0-4951-aef2-e406309b0390",
"actor":"alice__neta.localhost@bridge.localhost",
"to":[

"admin@localhost:3000"
],
"interpreterManifests":[

{
"manifestUri":"http://neta.localhost/iconet/formats/markdown/manifest.json",
"sourceTypes":[

(continues on next page)

3.2. Specification 19

iconet documentation

(continued from previous page)

"text/markdown"
],
"targetTypes":[
"application/iconet+html"

],
"sha-512":"empty"

}
],
"content":[

{
"packetType":"text/markdown",
"payload":"## Title\nText `code`"

}
],
"XDEBUG_SESSION_START":"13228"

},
"@context":"https://www.w3.org/ns/activitystreams",
"id":"https://bridge.localhost/4fb30562-6f2e-48f2-9e98-bb59b7f9e049",
"published":"2023-02-26T14:21:36+00:00",
"content":"This status contains iconet data.",
"to":[
"http://localhost:3000/users/admin",
"https://www.w3.org/ns/activitystreams#Public"

]
}

}

5.2 Fallback Transport

For communication between parties on different protocols, the information format, schema, authentication methods,
API endpoints, transmission protocol, etc. might not align.

Different networks which have the same fallback mechanism established and manage to exchange the fallback infor-
mation, can provide interconnectivity to their users.

That’s why it makes also sense, to have a fallback way for transport established.

5.2.1 Adressing & Routing

To send a message, the addressed receiver needs to be uniquely identifiable and locatable.

Users need to exchange addresses in URI format. If they do not have a common addressing protocol, they shall use the
iconet schema:

iconet:<domain-specific identifier>@<dereferenceable address>

• The dereferenceable address is the endpoint the message is sent to.

• The domain-specific identifier is only required to be processed by the receiving server.

The iconet: URI scheme specifies the protocol to be used, i.e. makes clear that this is an iconet address.

As transport protocol HTTPS is used. As endpoint address we define <dereferenceable address>/iconet/,
while in the future a port on the main address should be reserved for fallback transportation.

20 Chapter 3. Website

iconet documentation

5.2.2 Encryption & Security

If the sending and receiving party do not share means for encryption and authentication, we recommend a fallback
encryption method.

We use a hybrid cryptosystem similiar to PGP for our encryption porpuses.

The payload of each packet gets encrypted symmetrically with an AES-Secret. The secret get encrypted with each
contacts public key. How each contacts public key is obtained and trusted, needs to be done according to the personal
trust model.

Here is our example for an encrypted Packet:

{
"@context": "https://ns.iconet-foundation.org#",
"@type": "EncryptedPacket",
"actor": "bob@netb.localhost",
"to": "alice@neta.localhost",
"EncryptedSecret": <AES-Secret, Encrypted with recipients public key>
"EncryptedContent": <Manifestinfo & Packetcontent, Encrypted with AES-Secret>

}

5.3 Bridged Transport

Bridges are the hybrid solution between each native transport and a universal fallback transport.

While there are a couple of downside with bridges, they can be useful in the early adoption phase, when not many
servers have adopted the fallback transport yet. This way more users can be reached with interconnectivity.

1. Where are bridges hosted?

• Case 1: Every individual user hosts its own bridge. Bridges are a risk for privacy, since traffic has to be
decrypted before it can be bridged (and encrypted again). This issue can be avoided, when users host their
own bridges on a trusted device for example on the client. Also, bridging remains easier since the bridge
only needs to act as the user on the remote network (puppet bridge). Downside: Every user will have to
host an own bridge.

• Case 2: Hosting a bridge per room or server. In this case, users don’t need individual bridges. However,
all users will have to trust the bridge not to abuse its power to read and manipulate users messages. Addi-
tionally, many platforms do not support bridges that operate this way. In the worst-case a bridge bot that
joined a room will post a message that describes the sender by appending its name to the message body.

2. (How) can we discover and reach out to users of different protocols? Ideally, a user is able to find contacts
on different platforms (e.g. by phone number or email address). Therefore, not only a cross-platform user index
needs to be present but also an endpoint must be clear which the protocol can target to transfer a message across
to a different protocol. The bridging endpoint needs to be added to each users address, so it can be forwarded
from here. E.g.: alice@netA.org@bridge.net

There are different types of bridges to transfer packets across platforms. This matrix post discusses different types of
bridges for the interested reader.

3.2. Specification 21

https://matrix.org/docs/guides/types-of-bridging#types-of-bridges-simplest-first

iconet documentation

3.3 Challenges & Approach Discussion

Connecting (partially) incompatible networks opens up questions. For example:

• How to address a user / audience on a remote platform?

• How to present their content?

• How do systems communicate compatibility support?

• How can interactions (i.e. a poll or reactions) be supported?

• How / in what schema is content formatted?

• How does the API work?

• How to enable secure communication?

• Finding consensus & acceptance in the community

This page is a very incomplete list of challenges and discussions on possible solution pathways for solving those issues.

3.3.1 Presentation

• When to fall back to non-native presentation of content?

• What format does the fallback presentation have?

• How is fallback presentation generated - on the receiver side by using the sender’s platform-native message and
transforming it in a receiver-understood target format?

• What, if the client understands parts of the message (e.g. an attached vCard) but does not know how to present
the whole information?

For presentation on the client side, we identify three approaches which are not mutually exclusive but combinable.

1. Using format interpreters that support logic and which take any kind of message to create a supported presentation
(flexible but complex). This is the most flexible approach and where Iconet is heading towards.

2. Using a very basic common default format supported by all clients, e.g. plain text (which has to be sent along the
original packet or on request). This could be a useful fallback for clients that do not supported HTML+Javascript.

3. Using content negotiation to find out about the intersection of supported formats between sender and receiver
application. Disadvantage: what happens if there are no common formats? A more detailed elaboration of the
approaches is given in the subsections.

A possible example procedure combining the approaches could look as follows:

1. The receiving client has received a packet that it cannot present to the user. The packet has a plain text presentation
attached as well (as last resort).

2. The receiving client supports HTML and decides to fetch a format interpreter HTML document linked in the
packet. Alternatively, the document could reside in the packet. (Optionally: When fetching the document,
content negotiation could also result in a different kind of interpreter that, for certain protocols, can translate the
packet into a format understood by the client.)

3. The format interpreter HTML document can be embedded as an iframe by the receiving client. The receiving
client passes the packet to the format interpreter HTML document which renders a HTML representation.

22 Chapter 3. Website

iconet documentation

Format Interpretation

The idea of providing an interpreter is the following: If the receiver application is not able to present the received packet
in the sender application’s format, the interpreter can be used to translate the information that was not understood by
the receiver application.

The interpreter can be thought of as a converter that takes the sender’s native packet and generates a markup that the
client can render. To support interactive content, the interpreter could be an iframe taking data passed to it to display
a widget.

Ideally, no sensitive data should be exposed to anyone but the receiver in that process. Therefore, the question arises as
to how the interpreter information is transmitted to the receiver application. By request (and to whom?) if the packet
is not understood or in advance by the sender application?

The advantage of using an interpreter is that the sender does not need to provide (another) target format. The trans-
former can be developed separately. The message does not need to be re-requested if the receiver application does not
understand the format but only a transformer.

In some cases, certain parts of the foreign packet might be understood by the receiving client. In that case, the receiving
client is in charge of deciding if to render the fallback and how handle the packet.

Potential Examples

An isolated iframe (with no access to external (internet) resources) receives the packet that’s not able to be presented
by the receiver application’s native methods.

In the iframe, the interpreter can execute JavaScript to process the data and render a presentation for the user. Outgoing
communication could be channeled through an interface controlled by the client, that acts as a proxy and filters requests
to external resources.

Default Formats

Alternatively, instead of providing an interpreter, the message sent could be formatted in a very generic way understood
by any client (e.g. plain text) or multiple formats. See this matrix MSC as a source of inspiration for example. The
MSC proposes to append a markup for a message in multiple formats, each with a mimetype attached. The client is
supposed to present the first format supported.

"m.markup": [
{"body": "<h1>Hello there!</pre>", "mimetype": "text/html"},
{"body": "Hello there!", "mimetype": "text/plain"}

]

Content Negotiation

In the previous section, there were multiple formats of the same message were sent in one packet. In some cases, it
might be useful to perform content negotiation.

The client or the open inbox could ask to receive the message in a preferred format that both support. Downside: The
inbox might not know in advance which formats the client fetching the messages supports.

A different form of content negotiation could be used when the receiving client requests a format interpreter. The
endpoint that provides the format interpreters could support content negotiation for different target formats (that would
not even need to convert to a markup but a client-native packet format).

3.3. Challenges & Approach Discussion 23

https://github.com/matrix-org/matrix-spec-proposals/blob/matthew/msc1767/proposals/1767-extensible-events.md

iconet documentation

tl;dr

Options:

1. The Iconet packet contains the sender-native packet.

• The iconet packet contains a link to an endpoint providing interpreters (e.g. iframes) that the client can use
to convert and render the packet. Using content negotiation, different target formats could be requested.
Caching and security considerations should be considered.

• Instead of providing an endpoint for the interpreter, the needed data could be transmitted in the iconet packet
as well but reducing caching options.

• The interpreters’s code should be provided with a checksum to reduce attack vectors.

2. The iconet packet contains multiple content formats of which at least one should be supported by the receiving
application (probably plaintext).

3. Both of the above

3.3.2 Content Interaction

• How are interactions (e.g. a like or a comment) made available / communicated back?

• Should iframes be allowed to communicate back themselves (via their own requests) or should they request their
parent window to communicate?

• Is an iconet (interaction) packet processed by the client or the inbox server?

• Can interactions be authorized and how?

• Use cases:

– Use Case: Bob can like Alice’s post, but Claire (to whom the post was forwarded), can’t Can authorization
to access formats be delegated to receivers?

– (How) can messages be forwarded? Can formats handle ‘forwarding’ internally (not part of the standard)?

– Should we aim for standard auth mechanisms (e.g. OAuth)?

– Use Case?: A shared document is sent to Bob and a preview is rendered but Claire, to whom the post was
forwarded, should not see the preview. (How) can access be granted or requested?

– A public post that is sent to Bob in an iconet packet is supposed be be commentable by Bob only.

Option 1: Iframe communicates with native Apis

The main approach, as documented in 4.2.4. Receiving Updates / Sending Interactions

Option 2: Tunneled communication between iframe & embedding Application

The fallback-iframe can communicate over a controlled channel provided by its embedding application. Packets sent
over the controlled channel are sent back to the sender of the original packet. Since transport is handled by the embed-
ding application, this reduces overhead for the fallback-iframe creators and moves questions of signing and authenti-
cating as well as encrypting packets there. Therefore, for end-to-end encrypted communication, this has the advantage
of minimizing possible data-leakage to third-parties. On the other hand, it is less flexible.

The interaction packet is a JSON-LD-formatted object, the format is standardized:

24 Chapter 3. Website

iconet documentation

{
"@context": "https://ns.iconet-foundation.org#",
"@type": "Interaction",
"@id": "<an IRI identifying the packet>",
"timestamp": "<ISO 8601 timestamp>",
"originalPacket": "<the IRI identifying the original / target packet>",
"payload": "<custom data>"

}

The interaction packet’s payload is then forwarded back to the sender of the original packet.

Modes of Communication & Security

A container in the receivers application is used to wrap the interpreter and its packet presentation.

Possible proposal: Multiple trust levels

1. container is completely isolated

2. container may communicate via its parent host in a limited fashion

3. container may communicate by itself

The user or the client is in charge of allowing to elevate a message’s trust level.

Embedded (non-native) content MUST NOT be allowed to alter their parents’ state directly. Communication between
the parent application and the embedded content must be supervised.

Here, we illustrate three concepts on how interactions or updates can reach the client.

1. Option 1) would support neither method but only allow trusted fallback-iframes to connect to sources using the
available javascript interfaces, e.g. fetch. Thus, no further specification on the iconet side would be necessary.
See Sending Interactions for the related discussion.

2. Option 2) would allow actors to send updates (e.g. a message was edited) for packets they previously sent to the
inbox. This method can be thought of as push-like.

3. Option 3) would allow clients to poll for updates at the source, if needed. This method can be though of as
pull-like.

5.1. Option 1: Fallback-iframe Self-Governing

In analogy to the previous section, the iframe connects to a whitelisted source by itself and polls for updates. The
process is thus not iconet-specific.

5.2. Option 2: Push-Based

If updates to a packet (i.e. someone commented on a post) arise, the embedding application receives an interaction
packet / update to a packet. The embedding application passes the payload over to the fallback-iframe.

Note that if transport is not handled by a common iconet protocol, the schema and format may vary. The payload
however must not be altered during transport This is in analogy to the regular packets.

3.3. Challenges & Approach Discussion 25

iconet documentation

{
"@context": "https://ns.iconet-foundation.org#",
"@type": ["Packet", "Update"],
"@id": "<id of packet>",
"refersTo": "<id of original packet>",
"actor": "<sender>",
"to": ["<addressee>"],
"content": ["<... content data array, same as in the regular packets>"]

}

(5.3. Option 3: Pull-Based)

WIP-Level: 4

A request to ask for updates could look as follows. Note that if transport is not handled by a common iconet protocol,
the the schema and format may vary.

{
"@context": "https://ns.iconet-foundation.org#",
"@type": "UpdateInquiry",
"originalId": "<id of original message>",
"sender": "<sender address of this packet>",
"to": ["<address of the original packets sender>"]

}

The response would be a regular iconet packet with an additional updateTo field that contains the original packet’s
identifier. Alternatively, the packet could maintain the same id and the packet could have a timestamp and an update
count.

One option would be that the client invalidates the old message from thereon. Alternatively, the client could pass the
payload of the response to the iconet iframe, using the established message channel between client and fallback-iframe.

A response to an update inquiry could look as follows. If status NoChange is set, the packet does not need to have type
Packet and the corresponding payload field.

{
"@context": "https://ns.iconet-foundation.org#",
"@type": ["Packet", "Update"],
"@id": "<id of packet, if packet has update>",
"predecessor": "<id of original message>",
"status": "<either Update or NoChange.>",
"sender": "<sender address of this packet>",
"to": ["<address of the original packets sender>"],
"payload": "<native data>"

}

26 Chapter 3. Website

iconet documentation

Authentication

The authenticity of an actor could be established if communication is channeled through the parent host and the parent
host’s authenticity to the original sender is given. In the end, that leads to a situation where trust needs to be established
between platforms and users, where the respective platform ensures the authenticity of senders and receivers.

A separate, dedicated mechanism seems out of scope for a basic protocol. Even the whole web community hasn’t
agreed on a single working interoperable spec that fulfills everyone’s use case.

3.4 Glossary

3.4.1 Fallback Iframe (Interpreter)

The heart of fallback data interpretation. Iframes are HTML elements that can embed external html content in an
isolated sandbox. The fallback iframe is used by the embedding application which is not capable of interpreting a
foreign packet. The fallback iframe communicates with the embedding application in a standardized manner, to pass
the packet to the iframe and enable further interaction.

There are two types of fallback iframes: Presenter Iframes and Translator Iframes

Presenter Iframes render a HTML presentation of the packet passed to it and may allow user interaction with the iframe.

Translator Iframes function in the same way, however, they do not render a presentation but return the given packet data
in a different format back to the embedding application, hence “translate” the packet. For example, a client received a
packet of type text/markdown. The packet has translator iframes referenced to convert text/markdown to image/
jpeg and text/html. Since the application doesn’t know how to interpret markdown, it uses the translator to convert
it to a HTML document, sanitizes the HTML, and shows it to the user.

3.4.2 Embedding Application

An embedding application is an application that wants to display content that it cannot interpret itself but that has iconet
metadata attached. It therefore passes the content (a packet) to a fallback iframe which renders a presentation.

3.4.3 Foreign Protocol

A protocol that is not (natively) supported by a given embedding application.

3.4.4 Foreign Packet

A packet that is in the format of a foreign protocol.

3.4. Glossary 27

iconet documentation

3.4.5 Interpreter Manifest

A JSON-LD object that provides information on fallback iframes, their supported input packet types, their location,
and their security-relevant permission requirements.

3.4.6 Packet

A collection of data used to communicate from one application to another.

3.4.7 WIP-Level

Some sections begin with a WIP-Level: indicator. The Work-In-Progress-Levels is a guide as to how much mature
the given section is. Where WIP-Level 5 means “absolutely just some notes or thoughts” and WIP-Level 0 means “we
elaborated extensively and came up with something we feel confident enough to put in our prototype implementation”.

3.4.8 Status

TODO: Somethink like a value of implemented, idea, in discussion.

28 Chapter 3. Website

	What’s here?
	Prototypes
	Website
	Use Case
	Summary
	Pretext: Interoperability
	Problem: Incompatibilities
	Solution: Interconnectivity

	Adoption
	Inner Use case of interconnectivity
	Outer Use case
	Closing statement

	Specification
	1. Overview
	1.1 Introductory Notes

	2. Required Iconet Data for a Packet
	2.1 Field Descriptions

	3. Interpreter Manifests
	4. Fallback-iframes
	4.1 Iframe Permissions and Sandboxing
	4.1.1 Fallback-iframe Permissions
	4.1.2 Levels of Isolation
	Disabled Remote Resource Access
	Controlled Remote Communication
	Enabled Remote Resource Fetching
	Trust

	4.1.3 Sandboxing Iframes
	Content Security Policy
	Option 0: Using the Iframe’s csp Attribute
	Option 1: Add a CSP to the Iframe’s HTML
	Option 2: Use a proxy that sets the appropriate Content Security Policy headers

	4.2 Communication between Embedding Application and Fallback-iframe
	4.2.1 Fallback-Iframe Ready
	4.2.2 Parent Response
	4.2.3. Packet Translation Response
	4.2.4. Receiving Updates / Sending Interactions

	5. Transport
	5.1 Native Transport
	5.2 Fallback Transport
	5.2.1 Adressing & Routing
	5.2.2 Encryption & Security

	5.3 Bridged Transport

	Challenges & Approach Discussion
	Presentation
	Format Interpretation
	Potential Examples

	Default Formats
	Content Negotiation
	tl;dr

	Content Interaction
	Option 1: Iframe communicates with native Apis
	Option 2: Tunneled communication between iframe & embedding Application
	Modes of Communication & Security
	5.1. Option 1: Fallback-iframe Self-Governing
	5.2. Option 2: Push-Based
	(5.3. Option 3: Pull-Based)

	Authentication

	Glossary
	Fallback Iframe (Interpreter)
	Embedding Application
	Foreign Protocol
	Foreign Packet
	Interpreter Manifest
	Packet
	WIP-Level
	Status

